Workshop Title: IEA HPP Annex 41 – Cold Climate Heat Pumps

Participants:

	Name	Chair/Speaker	Affiliation
1	Mr. Van Baxter	Chair	Oak Ridge National Laboratory
2	Dr. Masafumi Katsuta	Host & Speaker	Waseda University & President, JSRAE
3	Dr. Kiyoshi Saito	Speaker	Waseda University
4	Dr. L. Zhang	Speaker	Central Research Institute of the
			Electric Power Industry of Japan
5	Dr. Thomas Fleckl	Speaker	Austrian Institute of Technology (AIT)
6	Dr. Brice Le Lostic	Speaker	Laboratoire des Technologies de
			l'Énergie Institut de Recherche (LTE),
			Hydro-Québec
7	Dr. Eckhard Groll	Speaker	Herrick Labs, Purdue University
8	Dr. Daniel Giguère	Speaker	CanmetEnergy, Natural Resources
			Canada
9	Dr. René Rieberer	Speaker	Technical University of Graz (TU Graz)
10	Dr. Bo Shen	Speaker	Oak Ridge National Laboratory

Abstract:

Background

The IEA Heat Pump Programme (IEA HPP) is a non-profit organisation with 15 member countries -Austria, Canada, Denmark, Finland, France, Italy, Germany, Japan, the Netherlands, Norway, South Korea. Sweden. Switzerland, United Kingdom and the United States http://www.heatpumpcentre.org/en/aboutHPP/Sidor/default.aspx. The Programme carries out a strategy to accelerate the use of heat pumps in all applications where they can reduce energy consumption for the benefit of the environment. It strives to achieve widespread deployment of appropriate high quality heat pumping technologies to obtain energy conservation and environmental benefits from these technologies. Under the management of an Executive Committee the member countries cooperate in projects (called Annexes) in the field of heat pumps and related heat pumping technologies such as air conditioning, refrigeration and working fluids (refrigerants). The IEA HPP established Annex 41 to investigate technology solutions to improve performance of heat pumps for cold climates. Four IEA HPP member countries are participating in the Annex - Austria, Canada, Japan, and the United States (U.S.).

The market adoption of heat pumps has been growing, particularly in temperate climate regions.

However, heat pump sales in colder climate areas, especially for air-source heat pumps (ASHPs), have been more limited for several reasons. Some have to do with local market characteristics like competition from other heating systems, such as natural gas furnaces or boilers, where gas is widely available. For ASHPs, there is also the technical issue of the loss of heating capacity and efficiency at low outdoor temperatures. The capacity loss is especially significant since most ASHP systems rely on electric resistance back up heating when their heating capacity falls below the house heating demand, resulting in low seasonal efficiency (e.g. SPF_h). Ground source heat pump (GSHP) systems successfully overcome the capacity loss problem by using the warmer ground as a heat source and have achieved some market success in cold climate regions, but the need for installation of a ground heat exchanger (GHX) and its relatively high cost are issues impacting their wider acceptance. Availability of ASHP systems with improved low ambient performance would help bring about a much stronger heat pump market presence in cold areas that today rely predominantly on fossil fuel heating systems. Accordingly the principal focus of Annex 41 is on technical solutions to improve cold climate performance of ASHPs. Primary technical objectives of the Annex are to define pathways to limit heating capacity loss at -25°C to ≤25% vs. nominal rated capacity at 8.3°C and achieve an "in field" heating SPF_h ≥ 2.63 W/W (HSPF ≥9.0 Btu/Wh).

Objective

The workshop objective is to share latest R&D results from Annex 41. Two presentations each are planned from Austria, Canada, Japan, and the United States.

Preliminary Workshop Agenda

Time		Title	Presenter
10	Minutes	Introduction to Annex 41	V. Baxter
5	Minutes	Welcome from host country	M. Katsuta
15	Minutes	Frosting phenomena between	M. Katsuta
		concavity and convexity plate	
		under forced convection &	
		Development of CO ₂ thermo	
		syphon for ground heat source	
		assisted heat pump system	
15	Minutes	Dynamics of heat pump system	K. Saito
		with frost formation process	
15	Minutes	A new method for preventing	L. Zhang
		air-source heat pump water	
		heaters from frosting	

20	Minutes	Investigation on icing effects of	T. Fleckl
		lab scale heat exchangers	
20	Minutes	Field performance of cold	B. Le Lostic
		climate heat pump	
15	Minutes	Coffee break	
20	Minutes	Update on cold climate	E. Groll
		heat pump research at the Ray	
		W. Herrick Laboratories at	
		Purdue University	
20	Minutes	Cold climate air-source heat	D. Giguère
		pumps using refrigerant mixtures	
		with thermal glide	
20	Minutes	Liquid Injection – a suitable	R. Rieberer
		solution for cold climate heat	
		pumps?	
20	Minutes	Tandem, single-speed	B. Shen
		compressor air-source heat	
		pump system laboratory and	
		preliminary field test results	
5	Minutes	Closing remarks - Annex 41 final	V. Baxter
		report plan and schedule	
200	minutes		

Outputs from workshop

Attendees will have the opportunity to come away from the workshop with an understanding of potential technical solutions for improving the low outdoor temperature heating capacity and efficiency of ASHPs as well as ideas on how to apply these to their own country situations. It is hoped that new contacts will be made between attendees that could lead to future successful collaborations.

Please describe the theme and purpose of this session and why it is important to have this workshop take place at ICR2015.

Contact information:

1. Name:	Van D. Baxter
2. Affiliation/Organization	name: Oak Ridge National Laboratory
3. Address:	PO Box 2008, Bldg. 3147, MS-6070; Oak Ridge, TN, USA 37831-6070
4. E-mail address:	vdb@ornl.gov